Nonuniform Variational Interpolatory Refinement

نویسنده

  • SCOTT KERSEY
چکیده

In this paper we investigate certain properties of the curves sk generated by a non-uniform variational refinement scheme defined over a k-window of some bi-infinite sequence of points. In particular, we show that error between sn and sk for k ≪ n over some fixed interval decays exponentially as k ↑ n, showing that sn can be well-approximated by sk for k much smaller than n. We use this result to approximate the variational refinement curves locally, and to approximate the global curve using a domain decomposition algorithm. Since the computation of the localized curves is more efficient, the new scheme results in a savings in computation for certain applications. We also generalize our non-uniform variational refinement scheme to the modeling of parametric surfaces defined over a rectangular grid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEPARTMENT OF MATHEMATICAL SCIENCES TECHNICAL REPORT SERIES Variational Refinement II: Smoothness Conditions

Sufficient conditions are given for C and C (subdivision) curves generated by a particular non-uniform, interpolatory, variational refinement scheme. The ‘energy’ functional being minimized is a discretization of the standard linearized spline functional over piecewise linear curves – a generalization of the minimizing functional used for the uniform scheme in [10]. The conditions used are unif...

متن کامل

On Convergent Interpolatory Subdivision Schemes in Riemannian Geometry

We show the convergence (for all input data) of refinement rules in Riemannian manifolds which are analogous to the linear four-point scheme and similar univariate interpolatory schemes, and which are generalized to the Riemannian setting by the so-called log/exp analogy. For this purpose we use a lemma on the Hölder regularity of limits of contractive refinement schemes in metric spaces. In co...

متن کامل

Analysis of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials

In this study, we are concerned with non-stationary interpolatory subdivision schemes with refinement rules which may vary from level to level. First, we derive a new class of interpolatory non-stationary subdivision schemes reproducing exponential polynomials. Next, we prove that non-stationary schemes based on the known butterfly-shaped stencils possess the same smoothness as the known Butter...

متن کامل

Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces * Bin Han † and Rong-qing Jia ‡

We analyse the approximation and smoothness properties of fundamental and refinable functions that arise from interpolatory subdivision schemes in multidimensional spaces. In particular, we provide a general way for the construction of bivariate interpolatory refinement masks such that the corresponding fundamental and refinable functions attain the optimal approximation order and smoothness or...

متن کامل

Applications of optimally local interpolation to interpolatory approximants and compactly supported wavelets

The objective of this paper is to introduce a general scheme for the construction of interpolatory approximation formulas and compactly supported wavelets by using spline functions with arbitrary (nonuniform) knots. Both construction procedures are based on certain “optimally local” interpolatory fundamental spline functions which are not required to possess any approximation property.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009